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ABSTRACT

The connections between the concept of nonlinear balance and the classical criterion of inertial stability are
explored in the context of historical work on this subject. New analytic results are derived establishing that
ellipticity and inertial stability are, in general, separate and distinct measures of balanced flows, even in the
case of gradient flow. In particular, nonlinear balance is violated more for weaker anticyclonic flows than is
inertial balance. These conclusions are supported by analysis of observational data.

A hierarchy of nonlinear balance criteria is constructed, which ranges from ellipticity to ‘‘realizability’’
conditions first obtained by Petterssen and Kasahara. Expressions interrelating all the nonlinear balance criteria
and inertial stability are derived, clarifying the relationship between the Petterssen criterion, Kasahara’s real-
izability, and inertial stability. The balance-criteria hierarchy is tested for cyclonic and anticyclonic conditions
using a nonlinear inviscid f-plane trajectory model. The modeling results confirm the analytical ellipticity–inertial
stability relationship. In addition, an intercomparison of balance criteria reveals that Petterssen’s realizability
(in the form derived here) is the most general and most physically interpretable balance criterion. The implications
of this work for generalizations of inertial instability theory are briefly explored.

1. Introduction

The relationship between inertial stability and non-
linearly balanced flows has not been completely clarified
to date. Inertial stability corresponds to a profile of an-
gular momentum that increases outward from a vortex
(Rayleigh 1916; Solberg 1933), or increases equator-
ward in the case of large-scale zonal-mean dynamics.
This is equivalent to positive (negative) absolute vor-
ticity in the Northern (Southern) Hemisphere. It is per-
haps best defined by its opposite: inertial instability, a
physically observable hydrodynamic instability caused
by an imbalance of pressure gradient and total centrif-
ugal forces. This instability is often described as the
horizontal analog of convective instability and is char-
acterized by horizontal ‘‘pancake’’ circulations that
cause lateral mixing until the imbalance is eliminated
(Andrews et al. 1987; Hitchman et al. 1987). Balance,
by contrast, is usually defined by a mathematical solv-
ability condition governing simplified versions of the
primitive equations of motion, a well-known balance
criterion being ‘‘ellipticity.’’ Nonelliptic regions in a
dataset violate this criterion and transform the solution
of the nonlinear balance equation into a problematic
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attempt to solve a partial differential equation in a mixed
hyperbolic–elliptic domain (Ghil et al. 1977).

For decades a connection of some sort has been noted
between the concepts of nonellipticity and inertial in-
stability in the context of understanding nonellipticity
from the viewpoint of numerical weather prediction.
However, the relationship of the mathematical require-
ment of solvability and its violations to any observable
atmospheric flow regimes ‘‘has remained a nagging
question’’ (Kasahara 1982). For example, Bolin (1956)
observed on this subject that the ‘‘physical meaning of
the [ellipticity] criterion is not clear but it is interesting
to notice that in the linearized case or in the case of a
circular vortex it is similar to the criterion of inertia (or
dynamic) stability.’’ Miyakoda (1956) speculated that
strongly nonelliptic regions would be accompanied by
large changes in divergence, referring to Syōno (1948),
who explicitly implicated inertial instability in the ‘‘av-
alanche’’ of cold air from the southern flank of the Si-
berian high. Charney (1962) drew a distinction between
the ellipticity of the nonlinear balance equation and its
numerical solvability, implying that inertial stability was
a more relevant measure of convergence of the iterative
solution: ‘‘When the potential vorticity became nega-
tive, the solution immediately blew up. When [the el-
lipticity condition] became negative nothing hap-
pened.’’ More recently, Paegle and Paegle (1974) de-
rived a version of the balance equation for which the
ellipticity condition apparently is identical to inertial
stability. Tribbia (1981) also equated inertial stability
with ellipticity in the case of gradient flow and moreover
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contended that nonelliptic regions are ‘‘potentially nat-
ural regions in which the transfer of energy between
rotational and gravitational modes occurs, either through
inertial instability or rotational mode breaking.’’ How-
ever, research on inertial instability has rarely touched
upon the topic of nonellipticity.

Árnason (1958) proposed that ‘‘a thorough investi-
gation of the dynamic stability of a nondivergent flow
may provide a physical interpretation of the ellipticity
criteria.’’ Conversely, a generalized examination of bal-
ance conditions may also inform our understanding of
inertial instability as a balance mechanism. The purpose
of this work is to help clarify the relationship between
the mathematics and the physical reality of this branch
of atmospheric dynamics. Below, a hierarchy of balance
criteria that includes quantities valid for the full range
of the primitive equations is described, derived, and
tested numerically. Several new analytical results are
obtained that interrelate the balance criteria, most no-
tably ellipticity and inertial stability. The development
of this hierarchy, in turn, sheds light on the need for a
more generalized approach to inertial instability as well,
the latter being the subject of a separate investigation
(see Knox 1996). In section 2, the relationship between
ellipticity and inertial stability in idealized balanced
flows is clarified. In section 3, violations of the ellip-
ticity and inertial stability criteria in observed flows are
discussed from the perspective of observational data-
sets. In sections 4 and 5, balance criteria more general
than ellipticity, first described by Kasahara (1982) and
Petterssen (1953), are derived and discussed. In section
6, relationships between the various balance criteria are
examined. In section 7, an intercomparison of various
generalized balance criteria is performed using a simple
nonlinear model, including a discussion of how these
modeling results compare with the idealized theory of
section 2. The implications of this work for inertial in-
stability research are explored in section 8, and the main
results of this study and future directions of research
are summarized in section 9.

2. Ellipticity and inertial stability in simple
nonlinear balanced flows

a. Classical theory

1) ELLIPTICITY IN GRADIENT FLOW

The nonlinear balance equation is obtained from the
horizontal divergence equation of the primitive equa-
tions of momentum on a midlatitude f- or b-plane by
neglecting all frictional, diabatic, and divergent terms
[Holton 1992, Eq. (11.15)]. Ellipticity arises as a math-
ematical constraint describing when the nonlinear bal-
ance equation can be solved as a boundary value prob-
lem. Although the resulting ellipticity criterion can be
applied to meteorological data or models without ref-
erence to the underlying mathematical theory, for com-
pleteness both perspectives are provided below.

From a mathematical perspective, the constraint of
ellipticity is derived using Monge–Ampère theory as
follows. The nonlinear balance equation is expressed in
terms of a streamfunction, and the resulting eigenvalue
problem is solved as an expression involving the co-
efficients of the terms (Sirovich 1988, 294–299). Clas-
sical theory focuses on the second-order partial deriv-
atives of the streamfunction; by perturbation theory
these terms determine the behavior of the high-fre-
quency modes, which in turn determines the elliptic,
hyperbolic, or parabolic character of the solution (J. C.
Strikwerda 1995, personal communication).

For meteorological applications on the sphere, the
ellipticity condition of the nonlinear balance equation
is most generally expressed as (Houghton 1968)

2 2 2f u 1 yc c2E [ 1 ¹ F 1 bu 1 . 0, (1)c 22 a

where f 5 2V sinf is the Coriolis parameter, F is the
geopotential, b 5 2V cosf/a, and the subscript c in-
dicates the nondivergent component of the flow. The
‘‘metric’’ terms in (1) arising from the sphericity of the
earth are usually negligible; moreover, the b term is
sometimes ignored, even in applications on the sphere
(e.g., Randel 1987). Note that first-order derivative
terms are incorporated into the ellipticity condition in
addition to the second-order terms that are the focus of
mathematical theory. For clarity, it is emphasized that
all terms involving the horizontal divergence, friction,
and vertical motion are absent from the nonlinear bal-
ance equation and therefore are ignored in deriving the
ellipticity condition.

As noted, the ellipticity condition is a mathematical
construct; that is, the choice of which terms appear in
(1) is dictated by the application of Monge–Ampère
theory to the nonlinear balance equation, rather than a
scale analysis of the equation. Therefore, to obtain phys-
ical insight into (1), it is common (e.g., Kasahara 1982;
Daley 1991) to examine one of the simplest cases of
nonlinear balance, namely steady flow on the axisym-
metric midlatitude f-plane. In this highly simplified case,
the momentum equations reduce to the familiar gradient
wind equation [Holton 1992, Eq. (3.10)], with regular
(non-anomalous) solution in anticyclonic flow equal to

1/22 2f R f R ]F0 0v 5 2 2 2 R , (2)gr 1 22 4 ]n

where R is the radius of curvature of trajectories and n
is the direction to the left of the flow. In this special
case, Daley (1991) has shown that (1) is equivalent to

2 21 ] f R ]F02 2 R . 0, (3)1 2R]n 4 ]n

which is simply the radial derivative of the condition
for real solutions of (2). Thus, ‘‘The ellipticity criterion
is related to the existence of a real solution to the gra-
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dient wind equation. The gradient wind has no solution
for the windfield in regions of intense high pressure,
and neither does the nonlinear balance equation’’ (Daley
1991, 233).

Investigating regular anticyclonic gradient wind so-
lutions more closely, it is easily found that real solutions
of (2) are bounded by

f R0v # 2 . (4)gr 2

In terms of the absolute vorticity h, this translates into

h [ f0 1 z 5 f0 1 zcurv 1 zshear $ 0, (5)

where z is the relative vorticity, zcurv 5 y/R is the cur-
vature component of the relative vorticity in natural co-
ordinates, and zshear 5 2]y/]n is the shear component
of the relative vorticity. Since regular cyclonic solutions
of the gradient wind obviously have h k 0, this implies
that all real regular solutions of the gradient wind, and
therefore from (3), all elliptic regions, are confined to
conditions of nonnegative absolute vorticity.

2) INERTIAL STABILITY IN REGULAR GRADIENT

FLOW

The classical inertial stability criterion for a zonal
geostrophic flow on the inviscid f-plane is (Holton 1992)

I [ f0(f0 1 zg) . 0, (6)

where zg is the geostrophic relative vorticity. For gra-
dient flow, Alaka (1961) derived the corresponding in-
ertial stability criterion on an isentropic surface:

y
I [ f 1 2 ( f 1 z) . 0. (7)0 01 2R

Alaka’s form is employed by Hoskins et al. [1985,
Eq. (30)]. Violation of (6), or (7) for regular flow,
requires negative absolute vorticity in the Northern
Hemisphere or, more generally, negative potential
vorticity (Hoskins 1974). Therefore, occurrences of
negative absolute vorticity in statically stable flow are
identified with inertial instability, although strictly
speaking this connection is limited to idealized cases
(Panchev 1985). Air masses are expected to maintain
I $ 0 through meridional or radial mixing (Andrews
et al. 1987; Holton 1992). As such, (6) and (7) con-
stitute measures of inertial balance, just as (1) is a
measure of nonlinear balance.

At this point an erroneous connection is sometimes
made between ellipticity and inertial stability. From
(3), (4), and (5), it might be argued, albeit incorrectly,
that since (i) the ellipticity criterion is violated where
the gradient wind has no real solution and (ii) real
regular solutions of the gradient wind require non-
negative absolute vorticity, then (iii) ellipticity re-
quires nonnegative absolute vorticity, which, given
(7), is equivalent to stating that for regular flow (iv)

ellipticity is identical to inertial stability. However,
this specious syllogism overstates the kinship be-
tween ellipticity and inertial stability. Although el-
lipticity requires nonnegative h, this is not equivalent
to the assertion that elliptic conditions have the same
lower bound of h 5 0 as does classical inertial sta-
bility. As will now be shown, ellipticity and inertial
stability are not equivalent measures of balance, even
in the case of regular gradient flow.

b. New results

1) NONLINEAR BALANCE VERSUS INERTIAL

BALANCE

Árnason (1958) derived the following criteria for the
case of a stationary circular vortex on a Northern Hemi-
sphere f-plane. For ellipticity,

E* [ ( f 1 2z )( f 1 2z ) . 0, (8)0 curv 0 shear

and for inertial stability,

I* [ ( f 1 2z ) 1 ( f 1 2z ) . 0.0 curv 0 shear (9)

Note that for the f-plane, E* 5 2E and f0I* 5 2I in the
case of regular flow [cf. (1) and (7)]. These multiplying
factors make the criteria more clearly comparable, but
do not affect interpretation.

Extending Árnason’s discussion, we expand (8):

E* [ f [( f 1 2z ) 1 ( f 1 2z )]0 0 curv 0 shear

22 f 1 4z z . 0, (10)0 curv shear

which can be expressed in terms of (9) as

E* . 0: f0I* . 2 4zcurvzshear.2f 0 (11)

Using (11), we can now directly compare nonlinear bal-
ance and inertial balance. Since from (9), f0I* . 0 in
the case of inertial stability in the Northern Hemisphere,
the rhs of (11) is a measure of the difference between
nonlinear and inertial balance. As a function of h, this
expression traces out three solutions, two parabolic and
one linear, depending on the relative signs and magni-
tudes of zcurv and zshear. The generic flow configurations
corresponding to these three cases are depicted graph-
ically in Fig. 1; Fig. 2 illustrates the rhs of (11) at 308N,
in which it is assumed that zzshearz $ zzcurvz. Each case is
now discussed separately.

Case A (zcurv/zshear . 0) is commonly observed in
large-scale flow that shear and curvature vorticities are
of the same sign (Newton and Palmén 1963; Bell and
Keyser 1993). An idealized depiction of this case is
shown for anticyclonic conditions in Fig. 1a. Given this
circumstance, a lower limit for solutions of (11) can be
established:

f0I* . 2 z2.2f 0 (12)

The derivation of (12) is given in the appendix. The
lower bound of solutions of (12) is indicated by the
solid parabola in Fig. 2; note that since case A solutions
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FIG. 1. Anticyclonic flow configurations corresponding to solutions of (11) in the Northern
Hemisphere: (a) zcurv/zshear . 0, (b) zcurv/zshear , 0, and (c) zcurv/zshear 5 0. Arrows denote wind
vectors; F denotes geopotential height contours, with negative subscripts indicating lower
heights.

FIG. 2. Comparison of ellipticity and inertial stability as a function of absolute vorticity,
based on (11) for f-plane gradient flow at 308N. The thick vertical line at the left-hand side
of the graph is the limit of classical inertial stability for regular flows [(7)]. The diagonal
double line denotes the boundary between ellipticity and nonellipticity as defined by (17).
Nonelliptic regions are shaded. The dashed vertical line separates anticyclonic from cyclonic
flows (relative to the earth). The solid horizontal line is the locus of points where nonlinear
balance and inertial balance are equivalent, denoted by E* 5 f0I*. The solid parabola is the
lower limit of (12). Solid symbols correspond to case A solutions (see Fig. 1a); open symbols
correspond to case B solutions (see Fig. 1b). The symbol code is as follows. Circle corresponds
to zzcurvz/zzz 5 0.5, square to zzcurvz/zzz 5 0.25, diamond to zzcurvz/zzz 5 0.10, and triangle to zzcurvz/
zzz 5 0.05. The X symbols correspond to case C (pure shear) solutions (see Fig. 1c).

are always the lower limit for the rhs of (11), (12) rep-
resents the absolute lower limit for all solutions of (11).
As such, the quantity 2 z2 might be useful as an2f0

easily calculated estimate of the difference between non-

linear balance and inertial balance for flows exhibiting
both shear and curvature. This hypothesis is tested using
a numerical model in section 7.

Since z is real, it follows from (12) that in case A
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situations the greatest possible minimum value of f0I*
is . For ellipticity to be equivalent to inertial stability,2f 0

the rhs of (12) would need to be zero; Fig. 2 shows that
this occurs at no more than two points for a given ratio
of zcurv versus zshear. More specifically, for flows with
relatively small h, nonlinear balance is less robust than
inertial balance; here, ‘‘less robust’’ means that the el-
lipticity condition is closer to being violated than is the
inertial stability criterion, that is, f0I* . E*. This non-
equivalence of ellipticity and inertial stability in anti-
cyclonic flow is more pronounced for unequal zcurv and
zshear. The reverse is true for strongly cyclonic flows
with large h. Although such flows are strongly elliptic
and inertially very stable, ellipticity and nonlinear bal-
ance are further from violation than inertial stability in
these cases, the nonequivalence being greatest when zcurv

5 zshear.
Case B (zcurv/zshear , 0) is for situations in which zcurv

and zshear oppose each other as in Fig. 1b [examples
include the Rankine vortex (Kundu 1990); see also
Newton and Palmén (1963), Fig. 15]; Fig. 2 reveals that
nonlinear balance is always closer to violation than in-
ertial balance. Here, is the smallest minimum value2f 0

of f0I*; therefore, the rhs of (11) is greater than zero,
unlike (9) for the inertial stability criterion.

For case C (zcurv/zshear 5 0), the dividing line between
cases A and B occurs when z is all shear or all curvature,
for example, linear shear flow as in Fig. 1c, in which
case (11) becomes

f0I* . .2f 0 (13)

Once again, nonlinear balance is less robust than inertial
balance, since the rhs of (13) is always larger than zero
(recalling that the analysis is for the midlatitude f-plane).

In the special case of pure shear flow where z 5 zg,
the difference between nonlinear and inertial balance
can also be determined by writing the two criteria in
terms of the geostrophic absolute vorticity hg 5 f0 1
zg. For ellipticity,

f E f0 0h 5 1 $ , (14)g 2 f 20

whereas from (6), for inertial stability,

hg . 0. (15)

2) NONELLIPTICITY VERSUS INERTIAL INSTABILITY

It is also possible to relate the limits of inertial and
nonlinear balance, which are of significance since vi-
olations of inertial and nonlinear balance are of prime
interest dynamically. We assume, as in Fig. 2, that large-
scale flows are dominated by shear rather than curva-
ture, that is, zzshearz . zzcurvz. Then from (8) it is obvious
that, in inertially stable or neutral flow at the limit of
ellipticity,

: zshear 5 2f0/2.E*crit (16)

Using (11), (16) simplifies to

: f0I* 5 1 2f0zcurv.2E* fcrit 0 (17)

Values of 2 4zcurvzshear . 1 2f0zcurv are therefore2 2f f0 0

nonelliptic; they are shaded in Fig. 2. The line of de-
marcation between ellipticity and nonellipticity defined
by (17) is the diagonal double line in Fig. 2. (Note that
all anticyclonic case B solutions are nonelliptic, since
zshear , 2 f0/2 in all such instances.) The limit of inertial
balance, by contrast, is the solid line at the left-hand
edge of the graph. From Fig. 2, it is seen that the limit
of nonlinear balance and the limit of inertial balance are
separate and distinct, although they are identical when
the two criteria are identical at h 5 0, zcurv 5 zshear.
Since both the ellipticity and inertial stability criteria
are typically of most interest when they are near zero,
that is, the point of nonellipticity or inertial neutrality,
this special case—in which the two criteria are the same
and are equally on the brink of violation—has perhaps
fueled the incorrect assumption that ellipticity and in-
ertial stability are identical in all cases. The results here
show that in more general cases the ellipticity condition
is usually violated for weaker anticyclonicity than is the
inertial stability criterion.

3) COMPARISON WITH EXISTING THEORY

A remaining task is to reconcile the results presented
above with seemingly contradictory claims in the extant
literature. Since gradient flow is a subset of nonlinear
balanced flow, how can (11) and Fig. 2 be reconciled
with Paegle and Paegle’s (1974) claim, apparently con-
firmed by Tribbia (1981), that the ellipticity condition
of the nonlinear balance equation ‘‘corresponds exactly
to the condition of non-negative absolute vorticity’’
(emphasis added)? A reexamination of Paegle and Pae-
gle’s work suggests that their ellipticity condition is not
equivalent to the h $ 0 condition for real solutions of
the nonlinear balance equation [their Eq. (24)]; instead,
their ellipticity condition should be identical to (1) on
the f-plane. In contrast, their condition for real solutions
is (1) plus the sum of the squares of the divergence and
deformation terms, which are nonzero in general. [Mi-
yakoda (1956) and Kasahara (1982), addressing this is-
sue, both explicitly note this distinction between ellip-
ticity and real solutions of the nonlinear balance equa-
tion; see Miyakoda’s Fig. 1 and Kasahara’s Eq. (11).
Ghil et al. (1977) also derive an ellipticity condition for
the nonlinear shallow-water equations that is not equiv-
alent to inertial stability. Iversen and Nordeng (1982)
observe that ellipticity and inertial stability coincide
only when deformation and divergence are both zero,
for example, the solid curve in Fig. 2.] Therefore, Paegle
and Paegle’s correspondence of ellipticity and inertial
stability may not be exact after all, which is to be ex-
pected given the results of this section. Finally, Tribbia’s
(1981) own form of the ellipticity condition [his Eq.
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(8b)] can easily be shown to lead to (8) and therefore
(11).

The primary conclusions to be grasped here are that
(a) even for simple flows, ellipticity and inertial stability
are not synonymous, but rather are separate and distinct
measures of balance, and that (b) for situations of weak
inertial stability, ellipticity should be closer to violation
than the classical inertial stability criterion. (However,
due to the limitations of gradient flow, the discussion
so far has not been able to address the relationship be-
tween the ellipticity and inertial stability criteria in
regions of inertial instability.) In the following sections,
we confirm and extend these results by examining more
complex observed and modeled flows.

3. Ellipticity and inertial stability criteria in
observed flows

A recurring enigma in numerical weather prediction
and atmospheric dynamics has been the detection of
large-scale regions of nonellipticity in observational da-
tasets where (1) cannot be satisfied. Petterssen (1953)
described a region of E* , 0 at 500 hPa over the south-
eastern United States for 1 day in November 1952. This
region was colocated with an area of small (, 1 3 1025

s21) absolute geostrophic vorticity, as would be expected
from (14) and (15). Bolin (1956) reported that 3%–5%
of mid- and high-latitude 500-hPa data were nonelliptic
during fall 1954. Using 1969–70 National Meteorolog-
ical Center (now the National Centers for Environmental
Prediction) analyses, Paegle and Paegle (1976a) found
subtropical oceanic regions at 200 hPa where nonellip-
ticity occurred as much as 80% of the time in winter;
even the data-rich southern United States exhibited non-
ellipticity as much as 20% of the time at 200 hPa in the
summertime. MacDonald (1977) also located regions of
nonellipticity in data-rich regions of the troposphere
over North America. Kasahara (1982) detected large
regions of nonellipticity in 13 January 1979 European
Centre for Medium-Range Weather Forecasting
(ECMWF) analyses for the troposphere and strato-
sphere. Randel (1987), employing the f-plane ellipticity
condition, identified tropical and midlatitude regions of
nonellipticity in several days of 1979 and 1983 strato-
spheric data. However, questions have long been raised
concerning the physical validity of the data from which
these conclusions have been derived, since the nonel-
liptic regions tend to occur where data is sparsest or
least reliable (Cressman 1959; Paegle and Paegle
1976a).

Similarly, large-scale regions that violate the clas-
sical inertial stability criteria (6) or (7) have been
observed repeatedly. Since the 1940s, these regions
have been detected on the equatorward flank of the
jet streams (e.g., University of Chicago Staff Mem-
bers 1947; Reiter 1961; Angell 1962; Ciesielski et al.
1989) and also on occasion in the midlatitude lower
troposphere (Thorpe et al. 1993). Young (1981) noted

negative absolute vorticity over the Indian Ocean at
900 hPa, 08–88N, 508–708E during July 1979. Hitch-
man et al. (1987) described persistent negative po-
tential vorticity in the equatorial lower mesosphere,
between roughly 0.1 and 1.0 hPa, and 08 and 108N
during the period November 1978–January 1979.
Anomalous absolute vorticity (where fh , 0) has also
been inferred from directly sensed winds in the zonal-
mean equatorial stratosphere from 30 to 40 km at
2.58N and 258S around the 1992–95 winter solstices
(Ortland et al. 1996). These regions, like regions of
nonellipticity, also frequently occur in zones of sparse
and questionable data, and arguments against their
existence and persistence have surfaced from time to
time (e.g., Blumen and Washington 1969; Leary 1974;
Holton 1983).

It is rare, however, to see ellipticity and inertial
stability examined simultaneously using the same da-
taset. To illustrate and relate these findings more com-
pactly, we turn to a stratospheric–mesospheric dataset
from the Limb Infrared Monitor of the Stratosphere
(LIMS). Figure 3 shows a 6-day average from 12 to
17 December 1978 of zonal-mean ellipticity and zon-
al-mean inertial stability derived from LIMS Version
4 three-dimensional geopotential height data, which
have been smoothed 1–2–1 in the meridional (see
Hitchman and Leovy 1986 for more details concern-
ing the dataset). In Fig. 3a, ellipticity is calculated
from LIMS heights by retaining the b and metric
terms in (1) and approximating ūc by ūg. In Fig. 3b,
inertial stability is calculated from (7) for R → `;
meridional wind shears near the equator are calculated
using sixth-order finite difference schemes to mini-
mize errors. In both figures, zonal winds are approx-
imated by the zonal-mean zonal gradient wind [Ran-
del 1987, Eq. (7)].

Figure 3 reveals that ellipticity and inertial stability
are not equivalent in observed situations, as argued in
section 2 for simple flows. Large, vertically coherent
regions of nonellipticity exist between 308S and 308N,
with the greatest occurrence being in the winter hemi-
sphere; this is fully in accord with Kasahara (1982).
Comparing Figs. 3a and 3b, nonellipticity is more prev-
alent than classical inertial instability, as expected from
the discussion in section 2. Nevertheless, significant
regions of classical inertial instability do exist in the
equatorial winter mesosphere, which have been corre-
lated with observed pancake structures by Hitchman et
al. (1987). Violations of inertial stability are generally
colocated with nonellipticity, but many nonelliptic
regions are weakly inertially stable.

In Fig. 4, the difference between inertial and nonlin-
ear balance is quantified for the same time period as in
Fig. 3. All values in the figure are multiplied by 109,
and positive values indicate that I . E; that is, inertial
balance is more robust than nonlinear balance. From the
figure it is obvious that, except for a small region near
the equator, inertial balance is nearly always greater than
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FIG. 3. Six-day averaged zonal means of quantities derived from LIMS Version 4 geopo-
tential height data for 12–17 December 1978. Shown are (a) the spherical form of the ellipticity
criterion (1) and (b) the zonal-mean inertial stability criterion (7). The southern extent of the
LIMS dataset is 648S. Negative values are shaded.

nonlinear balance, even in regions of classical inertial
instability (cf. Fig. 3b).

Clearly, nonellipticity and inertial instability are not
synonymous in theory or observations. But what phys-
ical mechanisms lead to each? As will now be shown,
ellipticity is a simplified balance criterion that ignores
some physical processes and can be generalized to ac-
count for these processes.

4. Beyond ellipticity I: Kasahara’s realizability

The ubiquity of observed violations of the ellipticity
criterion has prompted study of the physical premises
upon which this mathematical criterion is based. Ka-
sahara (1982) placed the nonellipticity problem in per-
spective by examining the condition of ellipticity for
the divergence equation, which retains all terms ignored
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FIG. 4. The arithmetic difference of the inertial stability criterion (7) and the spherical
ellipticity criterion (1) for the same dataset and time period as in Fig. 3. All values have been
multiplied by 109. Negative values indicate that I , E and are shaded; positive values indicate
that I . E.

in the nonlinear balance equation from which the ellip-
ticity criterion (1) is derived. The result of applying
Monge–Ampère theory to the divergence equation is
Kasahara’s ‘‘realizability,’’ defined in spherical coor-
dinates as

K [ E 1 F . 0, (18)

where F is defined as

]D ]D ]v
2F 5 1 v·¹D 1 v 1 D 1 ¹v· 1 bux]t ]p ]p

2 ¹·X 2 2[J(u , y ) 1 J(u , y ) 1 J(u , y )]c x x c x x

2 2u 1 y 1 2(u u 1 y y )x x c x c x1
2a

2 2] u 1 y
1 tan f . (19)

21 2]f a

In (19), D is the horizontal velocity divergence in spher-
ical coordinates, or (a cosf)21 ]u/]l 1 ](v cosf)/]f;
v indicates the horizontal velocity; the gradient operator
, is (a cosf)21 ]/]l 1 a21 ]/]f; v is the vertical ve-
locity in isobaric coordinates; the subscript x indicates
the divergent component of the circulation; X is the
contribution from subgrid-scale horizontal motions; and
J(u,v) is the Jacobian operator (a2 cosf)21 (]u/]l ]v/]f
2 ]v/]l ]u/]f). It should be noted with reference to F
that the bux term was apparently omitted by Kasahara
(cf. Haltiner and Williams 1980, 69); in addition, the
divergence of the subgrid-scale terms was not explicitly

indicated by Kasahara, nor was the form of the terms
in the second, third, and fourth lines of (19).

Using this more general approach to the problem,
Kasahara showed that in the zonal average, nonelliptic
regions in the Tropics, where (1) is not satisfied, do
indeed satisfy the more general solvability condition
(18); that is, they are realizable. In short, ‘‘nonelliptic
regions exist in the atmosphere because the terms ne-
glected in deriving the nonlinear balance equation are
not always negligible’’ (Daley 1991). Hence, ellipticity
is a mathematical constraint on an equation that does
not always describe the atmosphere accurately, whereas
Kasahara’s realizability is a mathematical constraint on
a much more general equation. The implication is that
K 5 0 is the appropriate demarcator between balanced
and unbalanced flows for regions that satisfy the prim-
itive equations but not the nonlinear balance equation.

Which term or terms in F cause regions of the at-
mosphere to deviate from nonlinear balance? This ques-
tion is identical to asking which physical processes dis-
tinguish Kasahara’s realizability from ellipticity. Ka-
sahara rejected the terms D2 and v·=D on the basis of
quantitative arguments, although it should be pointed
out that late 1970s ECMWF analyses likely suffered
from a deficiency in divergence (Hoskins et al. 1989).
Instead, Kasahara speculated that ‘‘(i)t is conceivable
that none of the terms in [19], except for the contribution
. . . due to subgrid-scale motions, is responsible for pro-
ducing a positive imbalance F in the nonelliptic
regions.’’
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A similar conclusion was reached by Randel (1987)
for the stratosphere, who did not acknowledge Kasa-
hara’s work. Large regions of nonellipticity were noted
at 10 hPa in the Tropics and the midlatitudes during a
sudden stratospheric warming. Furthermore, a strong
correlation existed between the residual term and the
nonelliptic regions. Randel suggested that ‘‘the true bal-
ance in these areas must contain important contributions
from either vertical advective terms or scales that are
not resolved here.’’

Since Kasahara’s study, it does not appear that his
criterion has been applied to observed or modeled flows.
In the recent literature, Daley (1991) remarked approv-
ingly on Kasahara’s extension of ellipticity but did not
extend the discussion further.

5. Beyond ellipticity II: Petterssen’s realizability

Although Kasahara’s realizability criterion reincor-
porates all terms that are ignored in the derivation of
the ellipticity condition, this is not equivalent to stating
that Kasahara’s criterion is the most general balance
criterion. On the contrary, it is merely the most general
solvability condition that can be derived from the di-
vergence equation and Monge–Ampère theory. How-
ever, another realizability criterion exists that is based
only on primitive equation assumptions and algebra,
with no direct reference to the theory of partial differ-
ential equations. This criterion was first obtained in a
simpler context by Petterssen (1953); it is derived below
for the full primitive equations, and the relationships
between Petterssen’s criterion, Kasahara’s realizability,
and the inertial stability criterion are clarified.

Beginning with the horizontal frictional primitive
equations, the divergence equation can be expressed as

]D ]D ]v 1
2 2 2 21 v·¹D 1 v 1 ¹v· 1 (A 1 B 1 D 2 z )

]t ]p ]p 2
25 2¹ F 1 fz 2 bu 1 ¹·X, (20)

where A is the shearing deformation, defined by Pet-
terssen in Cartesian coordinates as ]u/]x 2 ]v/]y, and
B is the stretching deformation ]v/]x 1 ]u/]y. (Note that
the velocity retains both the divergence and rotational
components, in contrast to the nonlinear balance equa-
tion.) By multiplying (20) by 2 and adding f 2 to each
side, the following exact expression is obtained:

(f 1 z)2 5 P, (21)

where

]D ]D ]v
P [ 2 E 1 1 v·¹D 1 v 1 ¹v· 1 bu 2 ¹·Xx1 2]t ]p ]p

2 2 21 A 1 B 1 D $ 0. (22)

Petterssen (1953) obtained a version of (21) and (22)
that did not include frictional or tilting terms and was
expressed as P½. Interestingly, the ellipticity E arises in

(22) despite the fact that no appeal has been made to
Monge–Ampère theory.

Equation (21), which is solely a consequence of the
divergence equation and algebraic rearrangement, can
be interpreted in at least two complementary ways. It
has been customary (e.g., Petterssen 1953; Miyakoda
1956; Reiter 1963; Paegle and Paegle 1974; Kasahara
1982) to take the square root of (21) to obtain an ex-
pression for the absolute vorticity, the usual inference
being that in the Northern Hemisphere h $ 0 as with
regular solutions of the gradient wind equation. This
inference is not completely persuasive, given the pre-
vious discussion concerning the many observations of
anomalous h and also the existence of primitive-equa-
tion models that easily develop anomalous potential vor-
ticity (e.g., O’Sullivan and Hitchman 1992). An equally
valid interpretation focuses on the rhs of (21): from this
perspective, (21) defines a new measure of nonlinear
balance P and requires P to be nonnegative even if the
absolute vorticity is anomalous.

Given this balance-criterion interpretation of (21), P
is Petterssen’s realizability, a physically derived mea-
sure of balance that retains the full physics of the prim-
itive equations with no other assumptions. (Here, ‘‘phys-
ically derived’’ means that the balance measure is ob-
tained directly from F 5 ma, not from solvability con-
ditions.) For P $ 0 and large radius of curvature R, the
relationship between this balance criterion and inertial
stability criterion (7) is particularly simple:

2I
P 5 . (23)

2f

For small-R flows that are still solutions of the primitive
equations, the denominator in (23) is (f 1 2V/R)2; but
in such cases I2 5 (f 1 z)2(f 1 2V/R)2, and so the
modification divides out.

Petterssen’s realizability also can be related to other
balance criteria. Using the algebraic rearrangement

A2 1 B2 1 D2 5 z2 1 2D2 2 4J(u, v), (24)

a new expression for P in terms of Kasahara’s realiz-
ability criterion (18) can be derived:1

P 5 2K 1 z2 2 4J(uc, vc). (25)

The particular importance of P as expressed above is
that on the one hand, it can be related to I through (23);
on the other hand, it is related to K and therefore all
the nonlinear balance criteria through (25). Therefore,
P can be used to establish generalized relationships be-
tween balance criteria such as Kasahara’s realizability
and ellipticity and the classical inertial stability crite-

1 A reviewer notes that Eq. (10) in Kasahara (1982) is not the same
as nor is directly comparable to (25) since the source term F in section
2 of Kasahara does not include second-order derivatives of the stream-
function.
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TABLE 1. Summary of nonlinear balance criteria discussed in the text, including the approximations inherent in each criterion.

Criterion Symbol Derived from f-plane? Steady?
Nondi-

vergent? Inviscid?

Classical inertial stability
Ellipticity
Motion parameter
Kasahara’s realizability
Petterssen’s realizability

I
E
M
K
P

Linearized equations of motion
PDE theory and balance equation
Modified divergence equation
PDE theory and divergence equation
Divergence equation

Yes
No
Yes
No
No

Yes
Yes
Yes
No
No

Yes
Yes
No
No
No

Yes
Yes
Yes
No
No

TABLE 2. Matrix of conversions between all nonlinear balance criteria discussed in the text, given that primitive-equation assumptions are
satisfied. All symbols are defined in the text.

I (f-plane, large R) E M (f-plane) K P

I — {f2[2E 1 2F 1 z2

2 4J(uc, yc)]}½

^f2{M 1 2F 2 D2 1 4
·[J(u, v) 2 J(uc, yc)]}&½

{f 2[2K 1 z2

2 4J(uc, yc)]}½

(f2P)½

E [I2/f2 2 z2

1 4J(uc, yc)]/2 2 F
— (M 2 A2 2 B2)/2 K 2 F [P 2 z2 1 4J(uc, yc)]/2 2

F
M I2/f2 1 D2 2 4

·[J(u, y) 2 J(uc, yc)] 2 2F
2E 1 A2 1 B2 — 2K 2 2F 1 A2 1 B2 P 1 D2 2 4[J(u,y) 2 J(uc,

yc)] 2 2F
K [I2/f2 2 z2

1 4J(uc, yc)]/2
E 1 F (M 1 2F 2 A2 2 B2)/2 — [P 2 z2 1 4J(uc, yc)]/2

P I2/f2 2E 1 2F 1 z2

2 4J(uc, yc)
M 1 2F 2 D2 1 4

·[J(u, v) 2 J(uc, yc)]
2K 1 z2-4J(uc, yc) —

rion. This approach is explored in detail in the next
section.

Another useful aspect of P is the physical significance
of violations of P $ 0. Any violations of (22) dissolve
the relationship between Petterssen’s realizability and
inertial stability in (23) and are directly interpretable as
violations of the dynamical assumptions that undergird
the traditional primitive equations: hydrostatic balance
and the smallness of the horizontal rotational component
of the Coriolis force (Andrews et al. 1987). As such,
violations of (22) should correspond to more physically
tangible flow regimes than violations of the other cri-
teria, perhaps being manifested as nonhydrostatic effects
associated with vigorous divergent circulations. (Al-
though it is true that the primitive equations themselves
are but a mathematical artifice, violations of the as-
sumptions that lead to them are more comprehensible
physically than violations of solvability conditions.)

Petterssen’s criterion has been noted periodically in
the literature. However, its status as a physically based
generalized balance criterion has been obscured by other
interests. Miyakoda (1956) derived an inviscid f-plane
version of (22) and noted that ‘‘it is somewhat curious’’
that the quantity P should be compelled to be nonneg-
ative. Miyakoda’s goal was to solve the balance equa-
tion, however, and so any negative values of his version
of (22) were automatically set to zero. Reiter (1963)
discussed Petterssen’s version of (21), but approximated
it in order to quantify the differences between geo-
strophic and observed relative vorticities. Later, Paegle
and Paegle (1974) and MacDonald (1977), following
Petterssen, derived a less general ‘‘motion parameter,’’
M, valid for the f-plane:

M [ 2E 1 A2 1 B2, (26)

and they used negative values of M to indicate regions
of high-divergence steady-state flows. More pertinent
to this discussion, Kasahara (1982) carefully noted that
E, K, and P are distinct: ‘‘The ellipticity measure [E]
. . . or the realizability measure [K] . . . can be negative
locally, as long as [P] remains positive . . . ‘realizability’
used here refers to a mathematically required situation
. . . [whereas P $ 0 is] a physically necessary situation
in order to yield physically realizable flows.’’ There do
not seem to be any subsequent discussions of Petters-
sen’s criterion, nor any applications of this criterion to
observed or modeled flows.

As a summary, Table 1 defines the various balance
criteria discussed in sections 2 through 5 and lists the
assumptions that undergird each criterion.

6. Balance criteria interrelationships

Using the results of the previous section, we can relate
nonlinear balance criteria to the inertial stability crite-
rion I as was done in section 2. In section 2, the analysis
was limited to a comparison of ellipticity and inertial
stability in regular gradient flow. Given the results of
sections 4 and 5, and in particular (23) and (25), the
treatment can now be expanded to include a suite of
balance criteria governing the full range of primitive-
equation flows.

The relationships between the various balance crite-
ria, which are predicated on the primitive-equation as-
sumptions (and large R for relations with I), are pre-
sented as a matrix in Table 2. These relationships have
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been determined from (1), from (7) for large R, and
from (18), (21), (23), (24), (25), and (26).

As in section 2, it is clear from Table 2 that ellipticity
and inertial stability are not equivalent criteria. Using
(7), (18), (23), and (25), for significant curvature the
exact relationship is

21 I
2E 5 2 z 1 4J(u , v ) 2 F. (27)c c22 2vF Gf 11 2R

At first glance, (27) might seem to have little in common
with the relationship (11) between E and I derived for
gradient flow in section 2. However, by using relation
(24), (27) is easily simplified to

2f
E 5 1 fz 1 2J(u , v ) 2 F. (28)c c2

Since J(uc, vc) 5 zcurvzshear and F 5 0 for a stationary
circular vortex, (28) is identical to E*/2 as defined in
(8), from which (11) and the E*–I* relationships in Fig.
2 are derived. Furthermore, for F 5 0 (28) reduces to
the familiar f-plane version of E 5 f 2/2 1 ,2F. This
is an example of how the relations in Table 2 are the
primitive-equation generalizations of the results in sec-
tion 2.

Table 2 also highlights how the generalized balance
criteria relate to each other and to the classical inertial
stability criterion. For example, by reading down the
second column of Table 2, it is found that the differences
between E and the more general balance criteria are
usually some combination of divergence or frictional
effects implied by F and flow deformation in A and B.
In contrast to the rather complex relationship between
E and I found in section 2, Table 2 shows that I and
Petterssen’s criterion are intimately related for all prim-
itive-equation flows, regardless of the amount of diver-
gence, friction, or deformation. Note also that P may
remain nonnegative even in primitive-equation flows
where divergence or frictional effects render K negative,
since P ø 2K 1 z2 when the Jacobian term is negligible.

In the following section, the balance criteria listed in
Table 1 and interrelated in Table 2 are compared and
contrasted using a simple numerical model. In section
8, we will return to these tables and explore the rami-
fications for inertial instability research.

7. Generalized balance criteria in a simple
nonlinear model

a. Trajectory model description

We now analyze the evolution of the balance param-
eters in Table 1, using a simple trajectory model first
derived by Paegle and Paegle (1976b). The intent of
this section is to demonstrate the utility of these criteria
in a situation uncluttered by the myriad complications

of application to ‘‘real’’ data or model output. As will
be demonstrated, different measures of nonlinear bal-
ance evolve quite differently depending on the prop-
erties of the flow, confirming and extending the results
of section 2.

The model is based upon the divergence, absolute
vorticity, shearing deformation, and stretching defor-
mation equations on an inviscid f-plane:

dD 1
2 2 2 25 (h 2 A 2 B 2 D ) 2 E, (29)

dt 2

dA
5 2DA 1 f(B 2 B ), (30)gdt

dB
5 2DB 2 f(A 2 A ), (31)gdt

dh
5 2hD, (32)

dt

where d/dt is the material horizontal derivative and the
subscript g denotes the geostrophic component. Ignoring
the tilting terms, assuming a circular anticyclonic pres-
sure field and a constant value of the ellipticity, the
system of equations closes to

dD 1
2 25 (bh 2 D ) 2 E, (33)

dt 2

dh
5 2hD, (34)

dt

where b 5 1 2 ( 1 )/ , in which the subscript 0
2 2 2A B h0 0 0

denotes the initial value of a variable. The model results
below are based on the system of (33) and (34), and
are interpretable (when h . 0) as perturbations on a
gradient-balance flow.

The background state in the model is assumed to be
unvarying and to have uniform h and geostrophic de-
formations. Thus, the larger the total parcel excursion
is, the less reliable are the assumptions employed in the
model since the parcel would eventually leave its orig-
inal environment. The solutions are also quantitatively
valid only to the extent that E, Ag, and Bg are relatively
uniform throughout the trajectory. However, since the
purpose of this experiment is to compare balance criteria
qualitatively rather than to describe the flow quantita-
tively, this limitation should not affect the conclusions
significantly. Paegle and Paegle (1976b) favorably com-
pared results from this model to observed cases of non-
elliptic flow. Despite the simple form of the model, it
(a) retains strong nonlinearity, (b) is solvable in regions
of nonellipticity, unlike the nonlinear balance equation,
and (c) permits easy and rapid calculation of the gen-
eralized balance criteria defined above, with respect to
the parcel. In particular, this model permits us to test
the impact of irrotational processes on the measure of
balance on an f-plane.

Paegle and Paegle (1976b) solved their trajectory
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TABLE 3. Parameters used in the model calculations shown in Figs. 5–10. Values are based on Reiter (1963), observations from Kasahara
(1982) and Hitchman et al. (1987), and values employed by Paegle and Paegle (1976b). A latitude of 308N is assumed.

Regime zg/f E (3 10210 s22) h0 (3 1025 s21) D0 (3 1025 s21) (A2 1 B2)/h2

Strongly cyclonic (Fig. 5)
Weakly cyclonic (Fig. 6)
Weakly anticyclonic (Fig. 7)
Strongly anticyclonic (Fig. 8)
Inertially unstable (Fig. 9)
Strongly inertially unstable (Fig. 10)

3.26
0.44

20.12
20.48
20.69
21.06

200
50
20

1
210
230

20
10
6
2

20.5
25

0.25
0.25
0.25
0.50
1.00
1.00

0.25
0.25
0.25
0.75
1.75
1.75

FIG. 5. Time evolution of the inviscid f-plane trajectory model described in section 7, for strongly cyclonic flow, as described in Table 3.
Variables plotted are (a) absolute vorticity and horizontal divergence, and (b) generalized balance criteria, as defined in Tables 1 and 2.

model for D and h analytically but did not examine the
evolution of balance parameters within the model, the
behavior of elliptic solutions, or inertially unstable flows
for synoptic-scale conditions. The model exhibits si-
nusoidal, steady, and asymptotic solutions; the character
of the solution changes with the sign of the ellipticity,
not the sign of the absolute vorticity. The reasons for
this will be explored in a future article.

The model was run with a variety of realistic, al-
though spatially uniform, background states; these and
the initial conditions imposed are listed in Table 3. These
conditions were obtained primarily from values em-
ployed by Paegle and Paegle (1976b), and data in Ka-
sahara (1982) and Hitchman et al. (1987). Values of h0

were estimated from geostrophic relative vorticity using
a relation found in Reiter [1963, Eq. 1.239 (11)]; how-
ever, Reiter’s equation fails for inertially unstable flow.
The last two cases in Table 2 are based largely on Fig.
3, which shows regions of nonellipticity colocated with
regions of weak and strong classical inertial instability.
A latitude of 308N is assumed throughout to facilitate
calculation of parameters and comparison with Fig. 2.

In all model runs, a fourth-order Runge–Kutta method
with a time step of 100 s was employed (Vreugdenhil
1994), with calculations ending at t 5 5 3 105 s (about
5.8 days). For each run, the following quantities were
calculated with respect to the parcel: D, h, and the five
balance criteria 2E, I, 2K, P, and M, which are defined
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FIG. 6. As in Fig. 5 but for weakly cyclonic flow, as described in Table 3.

in (1), (7) with R → `, (18), (25), and (26), respectively.
As in section 2, a factor of 2 is included in some cases
to make all criteria directly comparable. In this simple
model, only D, dD/dt, and the deformation terms A and
B are retained in the more general criteria. The ageo-
strophic Jacobian terms in K and P have been omitted;
calculations of K with and without these terms reveals
that their omission changes the value of the balance
criteria by less than 1%.

b. Model results

Figures 5 through 10 illustrate the evolution of the
balance criteria listed in Table 1 for the flow regimes
listed in Table 3.

For strongly cyclonic flow (Fig. 5), an oscillating so-
lution is obtained for D and h. The balance criteria in
all elliptic runs mirror the evolution of h, which cor-
responds to our understanding of the close relationship
between nonlinear balance and inertial balance. How-
ever, the criteria are not identical. The lower bound for
P is 2E [see (25)], suggesting that ellipticity underes-
timates balance due to its inherent approximations as
Kasahara (1982) posited. All criteria indicate that this
situation is balanced, in accord with expectations. Note

that the inertial stability criterion I suggests a weaker
balance than all other criteria, including 2E or even E.
Comparing this result to the simple calculations in sec-
tion 2, we find in Fig. 2 that inertial stability is less
robust than ellipticity for h . 2–3f in case A situations,
the exact value depending on the curvature of the flow.
In the model, h $ 2.74f for this case; hence the rela-
tionship between E and I in this run is in good agreement
with Fig. 2.

Weakly cyclonic flow (Fig. 6): Again, inertial stability
gives the least balanced assessment of the flow. How-
ever, even though I , 2E, note that I . E. In this
simulation, 1.4f # h # 1.8f, and Fig. 2 suggests that
in this range nonlinear balance should be less robust
than inertial balance, in agreement with the model. Ka-
sahara’s criterion is bounded below by inertial stability
and above by MacDonald’s motion parameter. The Pet-
terssen criterion suggests greater balance than the other
criteria for periods of large h.

Weakly anticyclonic flow (Fig. 7): In this case, I sug-
gests much more robust balance than E, particularly
compared to the weakly cyclonic case. This matches
expectations based on Fig. 2: by the theory of section
2, the greatest difference between inertial and nonlinear
balance should occur for flows with weakest relative
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FIG. 7. As in Fig. 5 but for weakly anticyclonic flow, as described in Table 3.

vorticity, and from Table 3 it is clear that this case has
weaker relative rotation than the weakly cyclonic case
in Fig. 6. Of all the generalized criteria, Kasahara’s real-
izability diagnoses the weakest balance.

Strongly anticyclonic flow (Fig. 8): A much slower
oscillation is obtained in this case, qualitatively in agree-
ment with classical theory. As before, the inertial sta-
bility criterion now overestimates balance versus E and
2E; here, 0.2f # h # 0.7f, and from Fig. 2 it is seen
that ellipticity is indeed closer to violation than inertial
stability in this range. The arithmetic difference I 2 E
is less than that in Fig. 7, however, which also is in
accord with Fig. 2.

Classically inertially unstable flow (Fig. 9): The mod-
el behavior changes markedly, corresponding to the
steady ‘‘vergic’’ balance described by Paegle and Paegle
(1976b) and MacDonald (1977). The flow evolution is
interpretable as an inertially unstable parcel attempting
to achieve inertial neutrality through strong divergence.
The linkage between observed regions of nonellipticity
and strongly divergent flows has been noted by, among
others, MacDonald (1977). Inertial instability and
strongly divergent flow patterns have been colocated in
a number of primitive-equation model simulations (e.g.,
O’Sullivan and Hitchman 1992). Here, E is negative

and M asymptotes to E; 2K, on the other hand, asymp-
totes to 22E. In this case, the asymptotic behavior is
linked to the relationship between the deformation terms
and h assumed in the model. Also, I converges to zero
on the timescale of 2 days, and P asymptotes to zero
much more quickly. This is of course to be expected,
since P } I2. Note that P is much smaller than 2K,
although both are nonnegative. As discussed in section
5, a value of P of zero would imply the least balance
achievable for a primitive-equation model, and so this
suggests that the vergic state is on the precipice of im-
balance, as is normally assumed for high-divergence,
near-zero absolute vorticity states.

Strongly inertially unstable flow (Fig. 10): For this
regime, the differences between the various criteria be-
come evident. As the nonellipticity is increased, Ka-
sahara’s realizability increases, since it asymptotes to
22E. This behavior does not seem to be especially use-
ful for a balance criterion; one might logically prefer
instead a measure that monotonically decreases with
decreasing balance. Both I and P converge to zero as
in Fig. 9. Nonlinear balance, as measured by E, becomes
much less robust than inertial balance (i.e., E , I) as
h → 0 from large negative absolute vorticities. If the
parabolic relationships shown in Fig. 2 hold approxi-
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FIG. 8. As in Fig. 5 but for strongly anticyclonic flow, as described in Table 3.

mately for the inertially unstable case, then this result
is in complete agreement with the case A theory in
section 2; the result also appears to be consistent with
the observational data shown in Figs. 3 and 4.

c. Interpretation of balance criteria intercomparison

The model results above show that the balance criteria
described in Table 1 have very different Lagrangian
evolution in a nonlinear model, and this behavior is at
least qualitatively consistent with the simple theory de-
rived in section 2. This consistency is not limited to the
points discussed above. For example, the conjecture
made in section 2 that the difference between nonlinear
and inertial balance can be estimated by the quantity f 2

2 z2 is borne out in Fig. 11, which shows the ratio (f 2

2 z2)/(I 2 E) for strongly anticyclonic flow.
Of all the criteria, P appears most useful for diag-

nosing balance in a generalized sense, since the distance
P is from zero is a reliable measure of the amount of
balance and P $ 0 in all model runs, which implies
satisfaction of primitive-equation assumptions. By con-
trast, K varies nonmonotonically as balance is reduced,
increasing without bound as E K 0. This is evidence
for the utility of P as a diagnostic of generalized balance.

It could be pointed out that, from (23) and (25), P is
merely a proxy for I, and so in fact I is the most useful
balance measure. This is true for the model simulations
here, since violations of the primitive equations are not
permitted in the model. However, in more general sit-
uations (e.g., a nonhydrostatic model), P should be able
to provide information not obtainable from I concerning
violations of primitive-equation assumptions. As an il-
lustration, despite several numerical studies of anoma-
lous potential vorticity in inertial instability, the rela-
tionship between inertial instability and nonhydrostatic
conditions is still a matter of speculation (e.g., Mc-
Williams 1991; O’Sullivan and Hitchman 1992). From
(23) and the studies themselves, it is clear that I , 0
can exist in primitive-equation flows; but are all oc-
currences of I , 0 governed by the primitive equations?
Merely examining I provides no answer to this question.
However, an accurate calculation of P could provide
more insight into the relationship, since regions of P ,
0 are unequivocal evidence of violations of the as-
sumptions implicit in the divergence equation, which in
turn is derived from the primitive equations.

To explore violations of the Kasahara and Petterssen
criteria and the physical causes for such violations, ex-
periments must be run with a much more complex model
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FIG. 9. As in Fig. 5 but for nonelliptic, inertially unstable flow, as described in Table 3.

or dataset. This work is in progress; results will be dis-
cussed in future articles.

8. Implications for inertial instability research

The previous sections have examined generalized
nonlinear balance theory in connection with inertial sta-
bility. Conversely, one may also consider generaliza-
tions of inertial instability theory in light of nonlinear
balance and the approach taken in the previous sections.
Certainly the comparison is warranted: inertial insta-
bility and nonellipticity both describe situations of
strongly anticyclonic flow in or near the Tropics, and
the traditional response to the presence of either in da-
tasets has been to remove the offending region artifi-
cially (Cressman 1959; Holton 1983; Tan and Curry
1993). The proof in section 2 that inertial stability and
ellipticity are not identical notwithstanding, the simi-
larities between violations of the two criteria invite fur-
ther comparison.

From Table 1, it is clear that both the ellipticity cri-
terion and the classical inertial stability criterion are
derived from inviscid theory that ignores much of the
nonlinearity inherent in the primitive equations (see also
Stevens and Crum 1987). In the case of ellipticity, these

assumptions have been shown by Kasahara (1982) to
be unwarranted for observed flows, and the model re-
sults in section 7 also suggest that ellipticity is not the
most general balance criterion available. Table 2 illus-
trates the generalization of ellipticity beyond its restric-
tive assumptions. It seems clear that some mechanisms,
probably frictional and/or divergent in nature, frequent-
ly disrupt nonlinear balance while the overall situation
is still a (possibly steady) solution of the primitive equa-
tions, that is, ‘‘realizable’’ according to the Kasahara or
Petterssen criteria.

Turning now to inertial instability theory, a situation
seems to exist that is similar to that described above for
nonlinear balance: the most common flow diagnostic is
neither universally appropriate nor the most general cri-
terion available. Inertial instability, whether occurring
in the equatorial middle atmosphere or in connection
with the Asian monsoon, takes place in regions where
frictional and/or divergent processes may not be ignor-
able. Yet the theoretical criterion for inertial instability
that is commonly applied to observational datasets, usu-
ally (6), is derived for idealized conditions that do ignore
these processes.

Therefore, the implication for research in inertial in-
stability theory is to follow the method outlined in this
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FIG. 10. As in Fig. 5 but for nonelliptic and strongly inertially unstable flow, as described in Table 3.

FIG. 11. Ratio of (f2 2 z 2)/(I 2 E) for the strongly anticyclonic
flow model simulation in Fig. 8.

paper: to begin with the primitive equations and derive
generalized criteria that are more widely applicable to
observations than the idealized theory. This approach
to inertial instability theory is described in detail in
Knox (1996). Although the two approaches are not iden-

tical—it is more appropriate for inertial instability the-
ory to derive an equation for the second derivative of
the velocity, rather than the material derivative of the
divergence as in nonlinear balance theory—similar
terms involving the frictional and divergent terms ap-
pear in each approach. It is found that the frictional term
representing gravity wave drag is a significant part of
the dynamics of inertial instability in the equatorial low-
er mesosphere. This result echoes Kasahara’s (1982) and
Randel’s (1987) speculations concerning the role of un-
resolved motions in creating regions of nonellipticity
(see section 4). The reader is directed to Knox (1996)
for further details.

9. Discussion

Theory, observations, and nonlinear modeling results
have been used to clarify and expand our understanding
of nonlinear and inertial balance. A hierarchy of mea-
sures of balance have been derived that range from in-
viscid f-plane quantities to criteria appropriate for the
full primitive equations. New analytic results of note
are relationships between the inertial stability criterion
and the ellipticity criterion for gradient flow, a rela-
tionship between Petterssen’s (1953) and Kasahara’s
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(1982) realizability criteria, and Table 2, which relates
various generalized nonlinear balance criteria to the in-
ertial stability criterion. The numerical modeling ap-
proach extends the analytical work of Paegle and Paegle
(1976b) and also confirms and extends the theoretical
results presented herein.

This work suggests several new avenues for research.
The most obvious future direction is to establish the
usefulness of these generalized balance criteria in ob-
servational data and model analyses. Work is in progress
to demonstrate that the criteria can be used as diagnos-
tics that provide a detailed quantitative interpretation of
the ‘‘balancedness’’ of complex flows. In addition, such
work should also shed light on the physical meaning of
violations of the various balance criteria. From the per-
spective of inertial instability research, numerical sim-
ulations could reveal the unexplored connections be-
tween the instability and violations of various defini-
tions of balanced flow. In summary, it is hoped that this
work provides future researchers with a hierarchy of
readily accessible tools for use in the diagnosis of com-
plex large-scale flows.
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article.

APPENDIX

Derivation of the Ellipticity–Inertial Stability
Relation (12)

From (11), we know that

f0I* . 2 4zcurvzshear
2f 0 (A1)

is equivalent to the ellipticity condition (8) for gradient
flow conditions. Notice that the rhs of (A1) is minimized
when zcurv and zshear are the same sign, for example, case
A in section 2. Specifically, the rhs of (A1) is at its
nadir whenever

zcurv 5 zshear. (A2)

Assuming (A2), (A1) becomes

f0I* . 2 4 .2 2f z0 curv (A3)

Equation (A3) can then be rewritten as

f0I* . 2 ( 1 2 1 ).2 2 2 2f z z z0 curv curv curv (A4)

Invoking (A2) once again, (A4) can be expressed as

f0I* . 2 ( 1 2zcurvz shear 1 ),2 2 2f z z0 curv shear (A5)

which is exactly equivalent to

f0I* . 2 (zcurv 1 zshear)2.2f 0 (A6)

Since z 5 zcurv 1 zshear for gradient flow, (A6) is simply

f0I* . 2 z2,2f 0 (A7)

which completes the derivation.
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